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J. Gegeliaa

Institut für Kernphysik, Johannes Gutenberg-Universität, J.J. Becherweg 45, D-55099 Mainz, Germany and
Department of Physics, Flinders University, Bedford park, S.A. 5042, Australia and
High Energy Physics Institute of TSU, University str. 9, Tbilisi 380086, Georgia

Received: 3 July 2003 / Revised version: 26 September 2003 /
Published online: 20 January 2004 – c© Società Italiana di Fisica / Springer-Verlag 2004
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Abstract. It is shown that the strong-interaction 1S0 proton-proton scattering length in very low-energy
effective field theory does not depend on the renormalization scale, if the electromagnetic interaction is
“switched off” consistently.

PACS. 03.65.Nk Scattering theory – 13.75.Cs Nucleon-nucleon interactions (including antinucleons,
deuterons, etc.)

Over the past decade Weinberg’s papers on describ-
ing nuclear forces using chiral Lagrangians [1,2] have
triggered an intensive activity (see, e.g., refs. [3–5] and
references therein). For processes involving more than one
nucleon, Weinberg suggested to apply the power counting
to the effective potentials. The transition amplitudes
are then obtained by solving the Lippmann-Schwinger
equation (or the Schrödinger equation). This approach
has been applied to various problems involving two and
three nucleons.

In this work we address the dependence of the strong-
interaction proton-proton scattering length on the renor-
malization mass parameter encountered in ref. [6]. The
discussion below closely follows the paper by X. Kong and
F. Ravndal [6] and the author’s PhD Thesis [7]. Similar
considerations have recently been presented independently
in refs. [8,9].

In order to describe proton-proton scattering at very
low energies, one can integrate out all particles except
protons and photons. The lowest-order strong-interaction
part of the effective non-relativistic Lagrangian for pro-
tons in the spin-singlet channel reads [6]

L0 = ψ†
(
i∂0 +

∇2

2M

)
ψ − C0

2
(ψσ2ψ)(ψσ2ψ)†, (1)

where ψ is the two-component field of the proton, M
the mass of the proton, C0 a coupling constant and σ2 a
Pauli matrix. This Lagrangian corresponds to the singu-
lar potential C0δ(r) which affects interactions only in the
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S-wave. On top of eq. (1), one also needs to include the
static Coulomb repulsion between protons. The effective
strength of this repulsion is η(p) ≡ η = αM/2p, where p is
the magnitude of the CM momentum of the protons and
α = 1/137 is the fine-structure constant. For small p, η is
large and hence the Coulomb repulsion becomes strong.
The scattering problem for both the Coulomb repulsion
and the singular strong-interaction potential of eq. (1) can
be solved simultaneously using the well-established for-
malism based upon the exact solutions of the Schrödinger
equation in the Coulomb potential [10].

In a partial-wave expansion of the full scattering am-
plitude [11], the total phase shifts δ� can be written as
σ� + δC

� , where σ� are the pure Coulombic phase shifts.
For pp S-wave scattering, δC

pp is related to the correspond-
ing (modified) strong amplitude TSC(p) by the standard
partial-wave expression

p (cot δC
pp − i) = −4π

M

e2iσ0

TSC(p)
. (2)

Note that δC
pp besides pure strong-interaction effects still

contains remnants of the electromagnetic interaction. It
is only the Coulomb repulsion between the protons in the
initial and final states that has been removed at this stage.

It is well known that cot δC
pp in eq. (2) does not have a

regular effective range expansion. Rather, one finds [12]

p
[
C2

η

(
cot δC

pp − i
)
+ 2ηH(η)

]
= − 1

aC
pp

+
1
2
r0 p2+ . . . , (3)

where
C2

η =
2πη

e2πη − 1
(4)
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is the Sommerfeld factor [10], aC
pp and r0 are the S-wave

Coulomb-modified scattering length and effective range,
respectively. They arise after removing the part of the am-
plitude described by the complex function [13]

H(η) = ψ(iη) +
1
2iη

− ln(iη) (5)

representing Coulomb effects at short distances. Here, the
ψ function is the logarithmic derivative of the Γ func-
tion. The imaginary part of eq. (5) cancels the term ∼ i
in eq. (3). The real part defines the function h(η) =
Reψ(iη)− ln η which is more suitable for a phenomenolog-
ical analysis [14].

The proton-proton scattering amplitude can be calcu-
lated from the effective Lagrangian of eq. (1) (plus the
Coulomb term). It takes the form [6]:

TSC(p) = C2
η

C0 e2iσ0

1− C0 J0(p)
, (6)

where

J0(p) = M

∫
d3k

(2π)3
2πη(k)

e2πη(k) − 1
1

p2 − k2 + iε
. (7)

When this result for the scattering amplitude is used in
eqs. (2) and (3), we see that both the phase shift σ0 and
the Sommerfeld factor C2

η cancel out. We are thus only
left with the evaluation of eq. (7) which can be done using
the power divergent subtraction (PDS) scheme of ref. [15]
in d = 3 − ε dimensions introducing a renormalization
mass µ. An ultraviolet divergence shows up as an 1/ε pole
in the integral. This will be cancelled by counterterms
which renormalize the coupling C0 in eq. (6) to C0(µ). As
a result, the finite part of the dressed bubble, eq. (7), is
found to be [6]

Jfinite
0 (p) =

αM2

4π

[
ln

µ
√
π

αM
+ 1− 3

2
CE −H(η)

]
− µM

4π
,

(8)
where CE = 0.5772 . . . is Euler’s constant. The last term
of eq. (8) is the contribution from the special PDS pole in
d = 2 dimensions. We now see that also the function H(η)
cancels out in eq. (3). At this order in the effective theory
there is no contribution to the effective range r0. If one
defines the strong scattering length (with the Coulomb
interaction switched off) as [6]

1
app

=
4π

MC0(µ)
+ µ, (9)

then from eqs. (3) and (6) it can be expressed in terms of
the measured scattering length aC

pp as

1
app

=
1

aC
pp

+ αM

[
ln

µ
√
π

αM
+ 1− 3

2
CE

]
. (10)

As is seen from eq. (10), app depends on µ. It has been
argued in ref. [6] that the strong scattering length app is

not a physical quantity as it cannot be measured directly
and thus in general it can depend on the renormalization
point µ. However, this explanation does not seem very sat-
isfactory if app is indeed understood as a scattering length
for the strong interaction when the Coulomb interaction is
switched off. It is completely true that app is not measur-
able experimentally, but from a theoretical point of view
it still is a physical quantity. As is clear from the analyses
of ref. [6], the sum of the δ-function and the Coulomb
potential is renormalizable. The δ-function potential is
also renormalizable. Hence, as one could consider these
two potetials themselves as independent “models” (with-
out higher-order corrections of effective field theory), all
physical quantities of both “models” should be renormal-
ization point independent. Consequently, one cannot ex-
pect that the dependence of the strong scattering length
on the renormalization point can be canceled by contri-
butions of higher-order terms in the potential generated
by effective field theory as suggested in ref. [6]. The ori-
gin of the µ-dependence of app is the α-dependence of the
running of C0(µ) in eq. (9). In order to define the strong
scattering length consistently as the quantity of the the-
ory with the electromagnetic interaction being switched
off, we should also put α = 0 in the running of C0(µ).

It is straightforward to calculate the running of the
renormalized coupling constant C0(µ) using the results of
ref. [6]:

C0(µ) =
C0 (µ0)

1− C0 (µ0)
{
−αM2

4π ln µ
µ0

+ M
4π (µ− µ0)

} . (11)

Setting α = 0 in eq. (11) yields

C̃0(µ) =
C̃0 (µ0)

1− C̃0 (µ0) M
4π (µ− µ0)

. (12)

Note that the value of the strong-coupling constant C̃0 (µ)
for µ = µ0 when the Coulomb interaction is switched off
does not coincide with C0 (µ). Defining

1
app

= −p
[
C2

η

(
cot δC

pp − i
)
+ 2ηH(η)

] |p=0,α=0 =

4π
MC̃0(µ)

+ µ, (13)

one obtains the strong scattering length which does not
depend on the renormalization parameter µ. The numer-
ical value of C̃0(µ0) for some fixed µ0 has to be given as
an input, as it cannot be calculated from C0 (µ) within
the given effective field theory. This is in agreement with
the result of ref. [16] that the 1S0 pp scattering amplitude
cannot be devided into strong and electromagnetic parts
in a model-independent way.

Note that if we consider both protons and neutrons
with an isospin invariant contact interaction in the 1S0

partial wave then at a given order of accuracy C̃0(µ) ex-
actly coincides with the renormalized coupling of pn and
nn contact interactions, and, consequently, app coincides
with apn = ann. This pins down C̃0(µ). Unfortunately,



J. Gegelia: Proton-proton scattering length in effective field theory 357

this is only the manifestation of the isospin symmetry
which has been taken as an input. Given C̃0(µ) as an in-
put (fixed through ann), one cannot calculate C0(µ) (and,
consequently, aC

pp) within the given effective theory.
One can also include the next-to-leading order correc-

tion to the effective Lagrangian (1) which for the S-wave
channel reads [6]

C2

16
(ψσ2(

→
∇ − ←

∇)2ψ)(ψσ2ψ)† + h.c. (14)

Taking into account the contribution of L2 to the pp po-
tential, one obtains the amplitude (in dimensional reg-
ularization) in exact analogy to the case of the contact
interactions plus one-pion exchange potential of ref. [17]:

TSC(p) =
ψ(0)2

1
C0+C2p2 −GE(0, 0)

, (15)

where ψ(0) is Coulomb wave function at the origin and
GE(0, 0) is the coordinate-space propagator from the ori-
gin to the origin in the presence of the Coulomb potential.
Substituting the values of these two quantities [6] we ob-
tain

TSC(p) = C2
η

e2iσ0

1
C0+C2p2 − J0(p)

. (16)

The model is no longer renormalizable, i.e. not all diver-
gences can be absorbed in available parameters, but if
one expands in powers of C2 and keeps only the zeroth-
and first-order terms (in C2), then all divergences can
be absorbed in C0 and C2. The renormalization is per-
formed analogously to the case without Coulomb interac-
tion [18,19], i.e. one expands

TSC(p)=C2
η

e2iσ0

1
C0

−J0(p)
+C2

η

e2iσ0p2 C2

C2
0

(
1

C0
−J0(p)

)2 +O
(
p4 C2

2

)

(17)
and absorbs the divergences of J0(p) by counterterms
which renormalize C0 leading to the running coupling of
eq. (11). The remaining divergences contained in the C2

0

factor in the denominator of the second term in eq. (17)
is absorbed into the renormalization of C2 by demanding

C2

C2
0

=
C2(µ)
C0(µ)2

. (18)

As the left-hand side of the eq. (18) is the ratio of bare cou-
plings, it does not depend on µ, hence the right-hand side
does not depend on µ either. Writing for some fixed µ0,

C2(µ)
C2

0 (µ)
=

C2(µ0)
C0(µ0)2

, (19)

solving eq. (19) for C2(µ) and taking eq. (11) into account,
one obtains the following expression:

C2(µ) =
C2 (µ0)(

1− C0 (µ0)
{
−αM2

4π ln µ
µ0

+ M
4π (µ− µ0)

})2 .

(20)

Analogously to C0(µ), the running of C2(µ) depends
on α. Therefore, to obtain the effective theory with elec-
tromagnetic interaction switched off, one should put the
fine-structure constant equal to zero in the running of C2

as well. This will lead to the running coupling C̃2(µ) which
cannot be calculated from C2(µ). In fact the running of
all couplings of low-energy effective field theory of strong
and electromagnetic interactions depends on α. This de-
pendence has to be switched off together with the explicit
α-dependence if one considers the quantities of the theory
with electromagnetic interaction switched off.

The underlying “fundamental theory” of strong inter-
actions, QCD, is most likely an effective theory itself [20].
The only parameters of this theory which we can meaning-
fully interpret are the renormalized, running parameters.
Therefore, the electromagnetic- and strong-interaction
contributions in physical quantities cannot be unambigu-
ously separated in this theory either (for detailed anal-
yses see ref. [9]). The unambiguous separation of the
electromagnetic- and strong-interaction contributions in
physical quantities would be possible in a truly funda-
mental, non-perturbatively finite theory (string theory, M-
theory?). On the other hand, if we consider the renormal-
ized parameters of both QCD and QCD+electromagnetic
interaction as an input, one can calculate (at least in prin-
ciple) the low-energy constants of effective field theories
with and without electromagnetic interaction using some
non-perturbative technique like lattice calculations.

In conclusion, we have considered 1S0 proton-proton
scattering at very low energies in the framework of ef-
fective field theory, where all degrees of freedom except
the proton and the photon are integrated out. We have
argued that the dependence of the strong proton-proton
scattering length (with the Coulomb interaction switched
off) on the renormalization mass parameter occurs only
if the Coulomb interaction is not completely switched off.
To consider quantities entirely due to the strong interac-
tions, one should also turn off the Coulomb interaction
in the running of the strong-interaction coupling. Doing
so generates the strong-interaction proton-proton scatter-
ing length which does not depend on the renormalization
mass parameter.

The author would like to thank B. Blankleider, S. Scherer and
A. Rusetsky for useful discussions and S. Scherer for numerous
comments on the manuscript. The support of the Alexander
von Humboldt Foundation is acknowledged.

Appendix A.

In this appendix we illustrate the solution of the
µ-dependence problem by means of a simple toy model.
Our model is analogous to pp scattering in the sense that
a “physical quantity” exhibits a renormalization scale de-
pendence when one of the “coupling constants” is put
equal to zero but is not simultaneously switched off in
the running of the second coupling constant.
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Suppose we have some “physical quantities”

y1(p) = C0 [a(p) + α b(p)] , (A.1)
y2(p) = α d1(p) + C0 d2(p), (A.2)

where α and C0 are “coupling constants” and a(p), b(p),
d1(p) and d2(p) are some given functions of “momentum”
p. Let us express y2(p) in terms of α and a “renormalized
coupling constant” C0(µ) ≡ y1(p)|p=µ. Expressing C0 as

C0 =
C0(µ)

a(µ) + α b(µ)
(A.3)

and substituting eq. (A.3) into eq. (A.2), we obtain

y2(p) = α d1(p) +
d2(p) C0(µ)
a(µ) + α b(µ)

. (A.4)

Now, let ỹ2(p) denote the result of y2(p) for α = 0.
Clearly, ỹ2(p) determined from eq. (A.2) as y2(p) for α = 0
does not depend on µ. On the other hand, if we naively
substitute α = 0 into eq. (A.4), we obtain

ỹ2(p) =
d2(p) C0(µ)

a(µ)
. (A.5)

As a consequence, ỹ2(p) determined from eq. (A.5) de-
pends on µ, because the µ-dependence of C0(µ) is not
cancelled by µ-dependence of a(µ):

C0(µ)
a(µ)

=
C0 {a(µ) + αb(µ)}

a(µ)
. (A.6)

For this simple toy example the resolution of the seem-
ing puzzle is clear: defining ỹ2(p) in terms of “renormalized
running coupling”, we should substitute α = 0 in eq. (A.4)
and also replace C0(µ) by C̃0(µ), where C̃0(µ) = y1(µ) for
α = 0. Doing so we obtain for ỹ2(p)

ỹ2(p) =
d2(p)C̃0(µ)

a(µ)
. (A.7)

As C̃0(µ) = a(µ) C0, eq. (A.7) indeed gives ỹ2(p) which
(correctly) does not depend on µ.

The problem of the µ-dependence of the pp scattering
length is fixed in analogy to this toy model. Note that

C̃0(µ) is uniquely determined by the “fundamental the-
ory” and can be calculated in this toy model. In EFT
C̃0(µ) is again uniquely determined by the underlying the-
ory but in practice it is not possible to calculate it (at least
for the moment being) and therefore has to be given as an
input.
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